Finsler metrics of scalar flag curvature and projective invariants
نویسندگان
چکیده
In this paper, we define a new projective invariant and call it W̃ -curvature. We prove that a Finsler manifold with dimension n ≥ 3 is of constant flag curvature if and only if its W̃ -curvature vanishes. Various kinds of projectively flatness of Finsler metrics and their equivalency on Riemannian metrics are also studied. M.S.C. 2010: 53B40, 53C60.
منابع مشابه
λ-Projectively Related Finsler Metrics and Finslerian Projective Invariants
In this paper, by using the concept of spherically symmetric metric, we defne the notion of λ-projectively related metrics as an extension of projectively related metrics. We construct some non-trivial examples of λ-projectively related metrics. Let F and G be two λ-projectively related metrics on a manifold M. We find the relation between the geodesics of F and G and prove that any geodesic of...
متن کاملProjectively Flat Finsler Metrics of Constant Curvature
It is the Hilbert’s Fourth Problem to characterize the (not-necessarilyreversible) distance functions on a bounded convex domain in R such that straight lines are shortest paths. Distance functions induced by a Finsler metric are regarded as smooth ones. Finsler metrics with straight geodesics said to be projective. It is known that the flag curvature of any projective Finsler metric is a scala...
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملRanders Metrics of Sectional Flag Curvature
A Finsler metric is of sectional flag curvature if its flag curvature depends only on the section. In this article, we characterize Randers metrics of sectional flag curvature. It is proved that any non-Riemannian Randers metric of sectional flag curvature must have constant flag curvature if the dimension is greater than two. 0. Introduction Finsler geometry has a long history dated from B. Ri...
متن کاملRanders Metrics of Scalar Flag Curvature
We study an important class of Finsler metrics — Randers metrics. We classify Randers metrics of scalar flag curvature whose S-curvatures are isotropic. This class of Randers metrics contains all projectively flat Randers metrics with isotropic S-curvature and Randers metrics of constant flag curvature.
متن کامل